В любой паре есть ровно один общий элемент Докажем, что он у всех одинаковый

пусть они разные

рассмотрим три множества, тогда нам нужно 3 неравных элемента для достижения условия

Добавим еще одно множество, тогда нужен еще один неравный элемент выходит, что при 2010 множествах нам нужно более, чем 45 элементов Если идти по оптимальному (с точки зрения колва переменных) пути, то в одном множестве накопится более 45

Если раскидывать равномерно, то во всех со временем накопится более 45

не выполняется условие

тогда элемент один и тот же тогда ABC...Z=2010*44+1=88441

В любой паре есть ровно один общий элемент Докажем, что он у всех одинаковый, пусть это не так

возьмем произвольное множество из 2010 множеств М1, докажем что в нем **найдется** такой элемент A, что он будет лежать по крайней мере в еще 45 множествах M2.M3,....,M46.

пусть это не так, значит любой элемент A из M1 будет лежать меньше чем в 45-и множествах получается всего множеств не более чем 44*45+1(само M0)=1981<2010

по нашему исходному синему предположению этот элемент А не является общим вообще для всех множеств, т.е. найдется множество X из 2010 множеств в котором A не лежит. Это множество пересекается попарно по одному элементу с каждым из множеств М1,М2,...,М46 и эти элементы не A, а значит в X 46 различных элементов (а различны они, потому что М1,М2,...,М46 междй собой пересекаются только по A) Противоречие, в том, что в каждом должно быть 45 элементов, а у нас получилось 46

Дано 2010 множеств, каждое множество содержит 45 элементов, при этом объединение любых двух множеств состоит ровно из 89 элементов. Сколько элементов содержит объединение всех этих множеств?

