

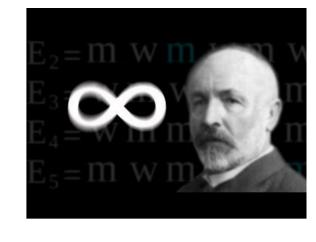


пусть хп уже построена, тогда

1) если n - четное то точка x_n лежит в A x_n+1 это прообраз точки x_n из множества В под действием функции g

х n+1 может найтись, а может на найтись

2) если n - нечетное то точка x_n лежит в В x_n+1 это прообраз точки x_n из множества A под действием функции f



5. Теорема Кантора — Бернштейна. Следующая теорема является одной из основных в теории множеств.

Теорема 2 (Кантор — Вернштейн). Пусть A и B — два произвольных множества. Если существуют взаимно однозначное отображение f множества A на подмножество B_1 множества B и взаимно однозначное отображение g множества B на подмножество A_1 множество A, то A и B эквивалентны.

Доказательство. Не ограничивая общности, можно считать, что A и B не пересекаются. Пусть x — произвольный элемент из A. Положим $x=x_0$ и определим последовательность элементов $\{x_n\}$ следующим образом. Пусть элемент x_n уже определен. Тогда, если n четно, то за x_{n+1} примем элемент из B, удовлетворяющий условию $g(x_{n+1})=x_n$ (если такой элемент существует), а если n нечетно, то x_{n+1} — элемент из A, удовлетворяющий условию $f(x_{n+1})=x_n$ (если он существует). Возможны два случая.

1°. При некотором n элемента x_{n+1} , удовлетворяющего указанным условиям, не существует. Число n называется порядком элемента x.

 2° . Последовательность $\{x_n\}$ бесконечна 1). Тогда x называется элементом бесконечного порядка.

Разобьем теперь A на три множества: A_E , состоящее из элементов четного порядка, A_O — множество элементов нечетного порядка и A_I — множество всех элементов бесконечного порядка. Разбив аналогичным образом множество B, заметим, что f отображает A_E на B_O и A_I на B_I , а g^{-1} отображает A_O на B_E . Итак, взаимно однозначное отображение Φ , совпадающее с Φ на Φ на все Φ на Φ на все Φ на все Φ на Φ на