The speed, $v \mathrm{~m} / \mathrm{s}$, of a particle moving in a straight line at time t seconds is given by $\mathrm{v}=\mathrm{V}\left(9-\mathrm{t}^{\wedge} 2\right)$. Find, correct to the nearest cm , the distance travelled by the particle in the first two seconds of its motion if it starts from the origin.

```
\(\mathrm{S}[0 ; 2]\left(\mathrm{V}\left(9-\mathrm{t}^{\wedge} 2\right)\right) \mathrm{dt}=9 / 2^{*} \arcsin (\mathrm{t} / 3)+(\mathrm{t}) / 2 \mathrm{~V}\left(9-\mathrm{t}^{\wedge} 2\right)\)
\(9 / 2^{*} \arcsin (\mathrm{t} / 3)+(\mathrm{t}) / 2 \mathrm{~V}\left(9-\mathrm{t}^{\wedge} 2\right) \mid[0 ; 2]=9 / 2^{*} \arcsin (2 / 3)+\mathrm{V}(9-4)=\)
\(=9 / 2^{*} \arcsin (2 / 3)+V(5)\)
```

