A. No cycles

The book contains k lines on one page. Thus, on the 1st page, lines from 1st to k-th are printed, on the second - from (k+1) -th to (2k) -th, etc.
Write a program, according to the line number in the text, which determines the page number on which this line will be printed, and the ordinal number of this line on the page.

Input data
The input to the program is the number k - the number of lines on the page and the number n - the line number in the text $(1<=\mathrm{k}<=200,1<=\mathrm{n}<=20000)$.

Output

Print two numbers - the number of the page on which this line will be printed, and the number of the line on this page

Examples of entrance

input data
501
output
11
input data
2025
output
25
input data
1543
output
313

```
void bookLines() {
    int totalLines;
    int lineNum;
    int pageNum;
    int newLine;
    cout << "Enter the # of lines per page & the line # in text requested: " << endl;
    cin >> totalLines >> lineNum; // 100 lines per page , line # = 350 ANS: 4, 50
    if (lineNum % totalLines == 0) {
        pageNum = lineNum / totalLines;
    }
    else {
        pageNum = lineNum / totalLines + 1;
    }
    newLine = lineNum % totalLines;
    cout << "Ans: " << pageNum << " " << newLine << endl;
```

\}

